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ABSTRACT 

One of the possible ways to further miniaturize technical devices is the utilization of the two-dimensional structures such 
as plates. The acoustic wave propagation is one of the important characteristics. This theoretical work provides two new 
shear-horizontal (SH) dispersive acoustic waves. The SH-wave dispersion relations are obtained in explicit forms for the 
case of the transversely isotropic (6 mm) plates. In the plate, the propagation of either new SH-wave is coupled with the 
electrical, magnetic, gravitational, and cogravitational potentials. Using the obtained SH-waves, it is possible to 
constitute various technical devices (filters, sensors, etc.) of acoustoelectronics and spintronics, and to integrate them in 
the new communication era based on some gravitational phenomena. Also, the plate SH-waves are apt for nondestructive 
testing and evaluation of (composite) thin films. 

PACS: 51.40.+p, 62.65.+k, 68.35.Gy, 68.35.Iv, 68.60.Bs, 74.25.Ld, 74.25.Ha, 75.20.En, 75.80.+q, 81.70.Cv, 96.20.Jz, 
04.30.-w, 04.90.+e, 95.30.Sf  

Keywords: Composite continuum media, gravitational effects, magnetoelectric effect, four potential coupling problem, 
new dispersive SH-waves in plates.  

 

INTRODUCTION  

The recent theoretical work by Zakharenko (2016) has 
developed the theory of propagation of specific shear-
horizontal surface acoustic wave (SH-SAW) in the 
transversely isotropic (6 mm) materials. The propagation 
of this new SH-SAW is coupled with the electrical, 
magnetic, gravitational (gravitoelectric), and 
cogravitational (gravitomagnetic) potentials. The 
development of the theory of the SH-wave propagation 
allows one to study some interactions among the 
mechanical, electrical, magnetic, gravitational, and 
cogravitational subsystems. Taking into account the last 
two subsystems for the SH-wave propagation can build a 
bridge among the acoustoelecronics, spintronics (the 
future electronics without free charge carriers) and the 
new communication era based on some gravitational 
phenomena.  

Füzfa (2016) has recently evaluated the coupling between 
the gravitational and magnetic fields in an order of by 
about 10−35. This interaction is extremely weak but can be 
measured in a laboratory at the Earth conditions with an 
atomic interferometry experimental technique. So, 

Füzfa’s work is directed towards the control of the 
gravitational field by the magnetic field. It is expected 
that many new applications concerning 
telecommunications with gravitational waves can be 
realized. The problems of interactions between the 
gravitational and electromagnetic waves, i.e. the 
production, detection, and controlling of gravitational 
fields can certainly represent one of the major interests in 
modern physics. It is well-known that the speed of light in 
a solid continuum is approximately five orders larger than 
the speed of any acoustic wave. This fact allows 
application the quasi-static approximation in the 
theoretical treatments. In 2016, it was experimentally 
recorded that the gravitational waves predicted by 
Einstein (1916) can also propagate with the speed of light 
in a vacuum (Abbott et al., 2016). The analogy between 
Maxwell’s theory of electromagnetism and gravitation 
was first discussed by Heaviside (1893). Another study, 
Füzfa (2016) has also mentioned that the equivalence 
principle of Einstein’s general relativity states that all 
types of energy produce gravitation and gravitational 
fields can be created by generating electromagnetic fields.  

Regarding some remarkable investigations, it is possible 
to mention some achievements of Li’s research group. Li 
and Torr (1991) have presented Maxwell's equations for 
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gravitation in a form where the superconductor 
cogravitational (gravitomagnetic) permeability is different 
from the vacuum one. With superconductors, they have 
illuminated an interrelationship between the 
cogravitational and magnetic fields. They have also found 
that some mass current can be caused by an electrical 
current and the superconductor magnetic flux represents a 
function of the cogravitational permeability, and vice 
versa. It was also shown for superconductors that the 
magnetically created cogravitational field can be 
approximately eleven orders larger than the internal 
magnetic field. Li and Torr (1992) have continued 
discussions on the interrelationship between the magnetic 
and cogravitational fields in superconductors. They have 
found that the propagation velocity of a gravitational 
wave in a superconductor is two orders of magnitude 
slower than the vacuum velocity and the value of relative 
cogravitational permeability is by about four orders larger 
than the vacuum one. Torr and Li (1993) have studied 
some coupling between the gravitational (gravitoelectric) 
and electric fields via superconductivity. Li et al. (1997) 
have recorded very small effect of change in gravity. 
Kleidis et al. (2010) and Forsberg et al. (2010) have 
studied some problems of interactions between 
gravitational and electromagnetic waves. Hegarty (1969) 
has evaluated the production effect of the gravitational 
field by a pulse of electromagnetic radiation.  

This study is aimed to take into account all five fields 
(mechanical, electrical, magnetic, gravitational, and 
cogravitational) in the theoretical treatments for the SH-
wave propagation in thin films, i.e. plates. So, the 
developed theory in the following section provides the 
explicit forms for the velocities of the new four-potential 
dispersive SH-waves propagation in the two-dimensional 
continuous materials such as plates.  

RESULTS AND DISCUSSION 

Theoretical Results  

First of all, it is necessary to state that the developed 
theory in (Zakharenko, 2016) provides the results on the 
propagation of the new nondispersive shear-horizontal 
surface acoustic wave (SH-SAW) in continuous media, 
i.e. bulk materials. This new SH-SAW is coupled with the 
following four potentials: the electrical, magnetic, 
gravitational, and cogravitational potentials. So, the 
theoretical work by Zakharenko (2016) records the 
possible propagation of the new nondispersive 4P-SH-
SAW. The results obtained in (Zakharenko, 2016) for the 
nondispersive wave can be further developed for the 
investigation of propagation of dispersive 4P-SH-wave in 
the transversely isotropic (6 mm) plates. To study 
dispersive wave propagation represents a significantly 
more complicated problem because the layer thickness of 
the plate plays a role of an additional dimension. 
Therefore, it is unnecessary in this short report to write 

down all the complicated formulae for the case of 
dispersive wave propagation in plates. Indeed, this is 
needless because the experienced reader can use the 
developed theory in (Zakharenko, 2016) in order to 
construct the dispersive wave case from the non 
dispersive wave one. However, it is indispensable to 
review the complicated theoretical methods leading to the 
final results obtained below. So, it is now possible to start 
the consideration of the dispersive wave propagation.  

Consider the two-dimensional transversely isotropic 
material of 6 mm symmetry. Let’s use 2d for the plate 
thickness. For the 6 mm material of thickness 2d, the 
propagation direction must be along the free surface of 
the plate and perpendicular to the 6-fold symmetry axis of 
the plate material (Gulyaev, 1998). For this case, the 
rectangular coordinate system is used: the x1-, x2-, and x3-
axes are managed along the propagation direction of the 
plate waves, 6-fold symmetry axis, and surface normal, 
respectively. The upper and lower free surfaces of the 
plate are then situated at x3 = + d and x3 = – d, 
respectively. The propagation direction is similar to the 
case of the 6 mm piezoelectrics (Gulyaev, 1998) and 6 
mm piezoelectromagnetics (Zakharenko, 2013a). The 
suitable directions for the SH-wave propagation in the 
piezoelectrics of 6 mm symmetry are well-known. The 
reader can also find them in two bibles (Auld, 1990) and 
(Dieulesaint and Royer, 1980) for acousticians.  

For the wave propagation treatment, it is necessary to first 
write down the constitutive relations and to apply quasi-
static approximation for construction of the differential 
form of the coupled equations of motion in the common 
form. These coupled seven equations are quite 
complicated and therefore, it is unnecessary to delineate 
them here below because the reader can find them in the 
recently developed theory (Zakharenko, 2016). The 
solutions for these complicated equations are naturally 
inscribed in the plane wave form. Exploiting these 
solutions for the differential form of the coupled 
equations of motion, the matrix form of these coupled 
equations of motion called the modified Green-Christoffel 
equation (Zakharenko, 2012, 2016) can be obtained. For 
the suitable propagation direction defined above in the 
context of this section, the Green-Christoffel equation can 
be rewritten as two independent sets of equations. The 
first set of two equations is for the propagation 
constitution of the purely mechanical in-plane polarized 
Lamb type wave (Zakharenko, 2007, 2012). The second 
set of five equations is for the anti-plane polarized SH-
wave coupled with the aforementioned four potentials: the 
electrical, magnetic, gravitational, and cogravitational.  

This work has an interest in investigations of the four-
potential SH-waves propagating in the transversely 
isotropic (6 mm) plate. Therefore, the set of five coupled 
equations of motion must be resolved. To resolve the 
equations’ set, it is indispensable to determine all of the 



Zakharenko 

 

4587

ten eigenvalues (Zakharenko, 2016) and the 
corresponding eigenvectors for each found eigenvalue kn3 
(Zakharenko, 2016, 2017). Here, k is the wave number in 
the propagation direction and n3 is called the directional 
cosine towards the x3-axis. With all found eigenvalues 
and eigenvectors, it is possible to write the following 
complete parameters: the mechanical displacement, 
electrical potential, magnetic potential, gravitational 
potential, and co-gravitational potential. Next, it is 
necessary to utilize these complete parameters in the 
mechanical, electrical, magnetic, gravitational, and 
cogravitational boundary conditions. At the upper free 
surface of the plate, x3 = + d, the normal component of the 
mechanical stress tensor and all of the four potentials 
must vanish. The same boundary conditions there are at 
the lower free surface of the plate, x3 = – d, i.e. the reader 
deals here with the case of symmetric boundary 
conditions.  

Employing the ten boundary conditions, ten homogeneous 
equations can be written in the matrix form. Therefore, 
the tenth order boundary conditions’ determinant 
(BCD10) of the coefficient matrix can be readily 
constructed. Some transformations usual for the case of 
plate wave propagation result in the fact that this BCD10 
splits into two independent BCD5. Either BCD5 provides 

the corresponding dispersion relation for the 
determination of the phase velocity Vph of the new SH-
wave coupled with the four potentials. The first dispersion 
relation, i.e. the dependence of the normalized velocity 
V4Pnew1/Vtemgc of the first new dispersive SH-wave can be 
expressed. This dispersion relation represents the 
dependence of the normalized velocity V4Pnew1/Vtemgc on 
the normalized plate thickness kd, where k is the 
wavenumber in the propagation direction and d is the 
plate half-thickness. It is convenient to write down the 
first dispersion relation in the following forms 
corresponding to the cases of V4Pnew1 < Vtemgc and V4Pnew1 > 
Vtemgc, respectively:  
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Table 1. The bulk solid material parameters, their estimated values and fundamental physical dimensions.  
 

Material parameter Symbol  Estimated values  Fundamental dimension 
[kilogram-meter-second]  

Mass density  ρ 103 to 104  kg/m3  
Elastic stiffness constant  C = C44 = C66 109 to 1011  kg/(m×s2)  
Piezoelectric constant  e = e16 = e34 0.1 to 10  kg1/2/m3/2  
Piezomagnetic coefficient  h = h16 = h34 0.1 to 103  kg1/2/(m1/2×s)  
Piezogravitic constant  g = g16 = g34 105 to 1010  kg/m2  
Piezocogravitic coefficient  f = f16 = f34 10–16 to 10–8  s–1  
Dielectric permittivity coefficient 
(electric constant)  

ε = ε11 = ε33 10–10 to 10–8  s2/m2  

Magnetic permeability coefficient 
(magnetic constant)  

μ = μ11 = μ33 10–6 to 10–3  dimensionless  

Electromagnetic constant  α = α11 = α33 10–16 to 10–12  s/m  
Gravitic constant (gravitoelectric 
permittivity coefficient)  

γ = γ11 = γ33 1010 to 1011  kg×s2/m3  

Cogravitic constant 
(gravitomagnetic permeability 
coefficient)  

η = η11 = η33 10–28 to 10–27  m/kg  

Gravitocogravitic constant  ϑ = ϑ11 = ϑ33 10–16 to 10–12  s/m  
Gravitoelectric constant 
(electrogravitic constant)  

ζ = ζ11 = ζ33 10–8 to 10–2  kg1/2×s2/m5/2  

Cogravitoelectric constant 
(electrocogravitic constant)  

ξ = ξ11 = ξ33 10–45 to 10–40  s/(kg1/2×m1/2)  

Gravitomagnetic constant 
(magnetogravitic constant)  

β = β11 = β33 10–6 to 10  kg1/2×s/m3/2  

Cogravitomagnetic constant  
(magnetocogravitic constant)  

λ = λ11 = λ33 10–40 to 10–35  m1/2/kg1/2  
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where  
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Expression (3) introduces the velocity Vtemgc of the shear-
horizontal bulk acoustic wave (SH-BAW) coupled with 
the electrical, magnetic, gravitational, and cogravitational 
potentials, i.e. the 4P-SH-BAW speed. Expression (4) 
defines the coefficient of the electromagnetogravito-
cogravitomechanical coupling (CEMGCMC) denoted by 

2
emgcK . All material parameters present in formulae (3), 

(5), and (6) are listed in Table 1.  

Concerning the second dispersion relations for the cases 
of V4Pnew2 < Vtemgc and V4Pnew2 > Vtemgc, the dependences of 
the normalized velocity V4Pnew2/Vtemgc of the second new 
dispersive SH-wave are respectively expressed as follows:  
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To check the rightness of obtained dispersion relations (1) 
and (7), the reader can use an infinite number of kd → ∞ 
that soundly leads to the following propagation velocity 
of the new nondispersive 4P-SH-SAW discovered in 
(Zakharenko, 2016):  
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It is possible to use the coefficient of the 
electromechanical coupling (CEMC) CeKe

22   for a 

pure piezoelectrics instead of 2
emgcK  in formula (9). In 

this case, formula (9) will reduce to the formula for the 
calculation of the propagation velocity of the surface 
Bleustein-Gulyaev wave (Bleustein, 1968; Gulyaev, 
1969). This symbolizes that the surface Bleustein-
Gulyaev wave coupled with the single potential (electrical 
or magnetic) is the primitive case compared with the new 
SH-SAW (9) coupled with the four potentials. It is worth 
noting that Bleustein and Gulyaev have never treated the 
gravitational effects. Also, it is possible to utilize the 
coefficient of the magnetoelectro mechanical coupling 
(CMEMC)    2222 2   СehheKem  for a 

piezoelectromagnetic material instead of 2
emgcK  in 

formula (9). This will reduce formula (9) to the formula 
for the surface Bleustein-Gulyaev-Melkumyan wave 
(Melkumyan, 2007; Zakharenko, 2013a) coupled with 
both the electrical and magnetic potentials. These facts of 
the successful reductions of formula (9) manifest that 
obtained results (1), (2), (7), (8) in this paper and obtained 
result (9) in (Zakharenko, 2016) are true. The reader can 
also check that for obtained results (1), (2), (7), (8), a 
successive exploitation of all the obtained different twelve 
sets of the possible eigenvector components (Zakharenko, 
2017) do not change these obtained results for the 
boundary conditions mentioned above formula (1).  

The Results of Calculations  

Figure 1 shows the dependence of the normalized 
velocities of the new dispersive SH-waves in the 
transversely isotropic (6 mm) plate. For 3.02 emgcK , the 
relation Vnew4P/Vtemgc is equal to by about 0.973 shown in 
figure 1 by the dotted line. Below the velocity Vtemgc, the 
velocity V4Pnew1 of the first new SH-wave in the plate 
starts at some value of kd ~ 4.4 and approaches the 
velocity Vnew4P when the value of the normalized plate 
thickness kd goes to infinity. Also, the normalized 
velocity V4Pnew2/Vtemgc of the second new SH-wave starts 
with (V4Pnew2/Vtemgc)min ~ 0.877 at kd = 0 and can reach 
Vnew4P/Vtemgc at a large value of the non-dimensional 
parameter kd. This fundamental mode cannot exist below 
the minimum value of (V4Pnew2/Vtemgc)min. For the other 
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values of 2
emgcK , it is possible to use the graphical results 

in (Zakharenko, 2014), just use 2
emgcK  instead of 

   2222 2   СehheKem  representing the 
coefficient of the magnetoelectromechanical coupling for 
a piezoelectromagnetics.  

Dispersion relations (1) and (7) define the phase velocity 
Vph of the dispersive SH-waves propagating in the plates. 
Using these dispersion relations, it is possible to find the 
first (dVph/d(kd)) and the higher derivatives of the phase 
velocity Vph with respect to kd. Therefore, it is possible to 
find the group velocity Vg, the first and the higher 
derivatives of the Vg with respect to kd. According to 

work (Zakharenko, 2005), the n-th derivative of the Vg 
will be a function of the value of kd and both the n-th and 
the (n+1)-th derivatives of the Vph with respect to kd. 
Thus, the n-th derivative (Zakharenko, 2005) is defined 
by  
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where n = 0, 1, 2, … , N. Here there is Vph = V4Pnew1 or Vph 
= V4Pnew2.  

The calculation of the first derivative of the velocity Vph 
with respect to kd can lead to quite complicated 
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Fig. 1. The dispersion relations for the fundamental modes, where the normalzed velocities V4Pnew1/Vtemgc (black solid 
line) and V4Pnew2/Vtemgc (grey solid line) are defined by equations (1) and (7), respectively; 3.02 emgcK .  
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Fig. 2. The dispersion relations for the higher-order modes, where the normalzed velocities V4Pnew1/Vtemgc (black dotted 
lines) and V4Pnew2/Vtemgc (grey dotted lines) are defined by equations (2) and (8), respectively; 3.02 emgcK .  
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expression that is shown in (Zakharenko, 2013b). With 
dVph/d(kd), it is possible to calculate the velocity Vg in 
(10). The second and third derivatives of the velocity Vph 
with respect to kd can lead to the determination of the first 
and second derivatives of the velocity Vg. These 
calculations can result in very large and complicated 
formulae and therefore, do not represent the main subject 
of this short report. The work by Zakharenko (2013b) also 
states that the found first and second derivatives of the 
velocity Vg can be readily used to determine the extreme 
and inflexion points in the dependence Vg(kd). The 
determination of these key points in the dependence 
Vg(kd) can help in constitution of some technical devices, 
for instance, the dispersive delay lines for the new era of 
communication based of some gravitational phenomena.  

CONCLUSION  

The dispersion relations for two new dispersive 4P-SH-
waves propagating in the transversely isotropic (6 mm) 
plates were obtained in explicit analytical forms. The 
propagation of these new dispersive 4P-SH-waves is 
coupled with the electrical, magnetic, gravitational, and 
cogravitational potentials. The obtained dispersion 
relations were then studied graphically for 3.02 emgcK . 
One of the possible applications is the constitution of new 
technical devices for new era of communication based on 
some gravitational phenomena. In comparison with bulk 
materials, the two-dimensional structures (plates) can 
further miniaturize the technical devised. The plate SH-
waves can be also suitable for nondestructive testing and 
evaluation.  
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